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Abstract. We apply Boltzmann equations for modelling the radiation damage in samples irradiated by
photons from free electron lasers (FELs). We test this method in a study case of a spherically symmetric
xenon cluster irradiated with VUV FEL photons. Qualitative agreement between the model predictions
and experimental data is found. The results obtained demonstrate the potential of the Boltzmann method
for describing the complex and non-equilibrium dynamics of samples exposed to FEL radiation.

PACS. 41.60.Cr Free-electron lasers – 52.50.Jm Plasma production and heating by laser beams (laser-foil,
laser-cluster, etc.) – 52.30.-q Plasma dynamics and flow – 52.65.-y Plasma simulation

1 Introduction

The emerging free-electron-lasers (FELs) promise tremen-
dous progress in studying the structure of matter with
soft and hard X-rays. The transversely fully coherent ra-
diation from the FEL will be delivered in flashes of ul-
trashort duration, emitted at peak brilliances more than
108 higher than those available from the present sources
of synchrotron radiation [1,2]. These unique properties of
FELs enable probing dynamic states of matter, transitions
and reactions happening within tens of femtoseconds, with
wide-ranging implications to the solid state physics, mate-
rial sciences, and to the femtochemistry. The FEL beam, if
focussed onto a very small spot, is also an excellent tool to
generate and probe extreme states of matter. The X-ray
FEL (XFEL) is expected to open new horizons in struc-
tural studies of biological systems, especially in the stud-
ies of non-repetitive samples, like viruses, living cells etc.
Rapid progress of radiation damage in these samples pre-
vents an accurate determination of their structure in stan-
dard diffraction experiments. However, the recent studies
of the progress of the damage formation [3–5] indicate
that the radiation tolerance might be extended at ultra-
fast imaging with high radiation dose as that expected
with the presently developed X-ray FELs (LCLS, DESY).

For this and other applications of FELs, we have to
understand in detail how the intense radiation of short
wavelengths, emitted in short pulses, interacts with mat-
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ter. In particular, accurate time characteristics of radia-
tion damage is necessary in order to estimate the range
of pulse length at which imaging with XFEL would be
possible.

The radiation damage of samples irradiated by soft
X-rays differs considerably from that induced by high
power IR-Lasers. In the latter case plasma heating by
inverse bremsstrahlung is the dominant damage pro-
cess [6–8]. For FELs, at different energies of the FEL
photons different processes are contributing to the ra-
diation damage. At VUV photon energies the inverse
bremsstrahlung process is believed to deliver most of the
energy needed for the efficient ionization of an irradi-
ated system [9]. This ionization eventually leads to the
Coulomb explosion of the sample. Photons of shorter
wavelengths may excite electrons from inner shells of
atoms, creating core holes [10]. Photoemissions, core-hole
creations and subsequent Auger emissions of secondary
electrons contribute to the radiation damage that then af-
fects not only the sample but also the optical elements of
the FEL beamline.

Radiation damage by photons from the VUV FEL is
now under intense investigation. First experimental stud-
ies on the interaction of the VUV photon beams with
atoms, molecules and clusters have been already per-
formed at DESY [11]. The large number of VUV photons
absorbed per atom that was observed in these experiments
could not be explained using the well-established standard
calculations for photon absorption [9,11]. This indicated
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that the ionization of samples irradiated by energetic pho-
tons progresses in a different way than that observed in the
optical energy range. These surprising results stimulated
intense theoretical effort. Several interesting models have
been proposed [9,12–14] which could explain various as-
pects of the increased photoabsorption and ionization dy-
namics observed in the experiments (for review see [15]).
On the other hand, there are still some controversies, e.g.
regarding the role of the inverse bremsstrahlung mecha-
nism and the inner ionization processes. A model: (i) com-
putationally efficient also for large spatially non-uniform
samples and (ii) able to test the influence of specific in-
teractions on the complex dynamics of electrons and ions,
could be useful in evaluating the contributions of different
mechanisms to the overall ionization dynamics.

Here we propose such efficient method of describing the
evolution of irradiated samples which applies also to large
systems. This first-principles Boltzmann method is based
on the statistical description of the charge dynamics in
terms of statistical quantities: electron and ion densities in
phase space, ρ(e,i)(r,v, t). These densities are functions of
the spatial and velocity coordinates, r and v, and are mea-
sured at some time, t. The quantity, ρ(e,i)(r,v, t)d3r d3v,
estimates a number of particles (electrons or ions) in an in-
finitesimal volume element of phase space, dV = d3r d3v,
which is located at the spatial point, r, and at the velocity,
v. Charge densities are evolved from their initial configu-
ration at t = 0, using semiclassical Boltzmann equations.

The Boltzmann method is a promising alternative to
the first-principles Monte Carlo (MC) or Molecular Dy-
namics (MD) methods which are commonly used [3,4,16].
The Monte Carlo method may be viewed as an approx-
imate stochastic method of solving transport equations.
During the simulation the MC code has to solve the sep-
arate equations of motion for each particle in the sample,
following the trajectories of all particles and their interac-
tions with other particles or external fields. If any scatter-
ings occur, the scattering probabilities are estimated with
quantum mechanical cross sections. Coordinates and ve-
locities of particles are updated at each time-step. Simula-
tions of single events are repeated many times. Estimates
of physical observables are obtained by averaging their
values obtained from single events over the total number
of events. Therefore these estimates are biased with sta-
tistical errors.

Monte Carlo algorithms have a transparent structure
and usually do not require an application of any com-
plex numerical methods. This is a great advantage of this
method. However, these algorithms become computation-
ally inefficient when the number of particles, N , is large.
The code efficiency is even worse, if the long-range interac-
tions between particles (e.g. Coulomb electrostatic forces)
have to be included into the simulation. High computa-
tional costs which scale with the number of particles re-
strict the applicability of the Monte Carlo method to the
samples of small or moderate sizes.

In contrast, the efficiency of the simulation algorithm
with the Boltzmann equations does not change directly
with the number of particles in the sample, as the algo-

rithm operates on smooth density functions. Therefore the
efficiency and accuracy of these algorithms depend only on
the phase-space shape of the sample which is reflected in
the number of grid points used in the simulation. There-
fore this statistical approach can also work fine for large
samples, where the MD/MC methods are inefficient.

The full spatio-temporal characteristics of the elec-
tron and ion dynamics can be easily obtained with
the transport method. As charge densities are directly
evolved with Boltzmann equations, the averaged observ-
ables, O, of interest can then be calculated with their
convolution with the charge densities obtained, 〈O(t)〉 =∫

O(r,v) ρ(r,v, t)d3r d3v. These results are not biased
with statistical errors.

The applicability of Boltzmann equations is, however,
limited to the systems which fulfill the assumptions of
molecular chaos and two-body collisions. These assump-
tions are usually justified by a presence of short range
forces [17,18]. The single particle density function ob-
tained with these equations does not contain any in-
formation on three-body and higher correlations. If the
higher order correlations are important, a more funda-
mental Liouville equation for the N-particle density func-
tion should be applied. The Liouville equation reduces to
the collisionless Vlasov equation [17] in case of an uncor-
related system. Fokker-Planck equation [17] can be de-
rived as a limiting form of the Liouville equation for long-
range (Coulomb) forces. It was proven in reference [17]
that a correct description of many body long-range in-
teractions of plasma electrons and ions obtained with the
dedicated Fokker-Planck equations can be also obtained
with the two-body Boltzmann collision term, assuming the
Debye cutoff in the Rutherford scattering cross section.
This simplification does not apply to the electron-electron
interactions, where the interacting charged particles have
identical masses, and the momentum transfer during their
collisions cannot be neglected.

Another disadvantage of the Boltzmann approach is its
numerical complexity. Boltzmann equations are compli-
cated sets of nonlinear integro-differential equations where
partial derivatives appear in both spatial and velocity co-
ordinates, ∂/∂r, and ∂/∂v. Advanced numerical methods
have then to be applied.

In what follows we will show the potential of
Boltzmann method for studies of the radiation damage
in samples irradiated by FEL photons. At the present
state we do not aim to obtain any quantitative predic-
tions which could later be compared to the existing exper-
imental data. Actually, we are interested in proposing a
new theoretical approach for a comprehensive description
of the progress of radiation damage in irradiated samples,
almost independently of the sample size. A construction of
a realistic model including all relevant physical processes
is planned at later stages.

First we will write general Boltzmann equations for
samples irradiated with VUV photons. These equations
will include basic physical processes contributing at those
photon energies. We will then solve these equations in a
simplified (study) case of a spherically symmetric xenon
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cluster. Due to the symmetries of the sample which elimi-
nate the dependence of charge densities on one of the az-
imuthal angles, the number of independent coordinates in
these equations can be reduced by one, from six to five.
Further simplification of Boltzmann equations is achieved
by applying the first-order angular moments expansion
to the charge densities. These simplified equations, con-
taining three different components of charge density: the
isotropic, transport and the drift one, can then be treated
numerically in an efficient way.

We will solve these simplified Boltzmann equations,
and show how efficiently they can follow the dynamics of
electrons. We will consider two study cases: (i) the case
of the pure Coulomb dynamics, where we restrict the in-
teraction of the laser field with the sample only to the
photoionization effect, (ii) the case where a complete in-
teraction of sample with the laser field is implemented,
i.e. the drift component of electron density describing the
interaction of electron density with laser field is treated,
and the contribution of the inverse bremsstrahlung pro-
cess which heats up electrons during elastic electron-ion
collisions is included. The results obtained are discussed
in detail. Afterwards, a short summary is given. Finally,
we list our conclusions.

2 Boltzmann equation

Statistical description of a classical system can be made
in terms of its density function, ρ(r,v, t) [18–20], where
ρ(r,v, t) is defined such that ρ(r,v, t)d3rd3v is the number
of particles at time t positioned between r and r+dr which
have velocities in the range (v,v + dv).

Evolution of this density function can then be de-
scribed by Boltzmann equation,

∂tρ + v∂rρ + F∂vρ/m = Ω(ρ, r,v, t), (1)

where F is a force (external or internal) acting within the
system, and Ω(ρ, r,v, t) is a collision (source) operator,
describing the change of charge density due to the inter-
particle collisions or other short range processes ocurring
within the system.

The most important feature of Boltzmann equa-
tion is the ability to describe non-equilibrium processes.
Boltzmann equations are used for describing transport
phenomena in many different physical contexts, ranging
from the simulations of the hot electron transport in semi-
conductors, simulations of plasma kinetics [17,21–24] to
the evolution of protoneutron stars [25] and to the mod-
elling of the core collapse in supernovas [26].

We will now formulate the specific Boltzmann equa-
tions describing the transport of electrons, atoms and
ions inside a sample irradiated with FEL photons. In this
case it is enough to consider two gases: the gas of light
electrons of masses, m and charges, −e, and the gas of
heavy atoms/ions of masses, M , and charges, ie. Photons
need not to be considered as an independent gas compo-
nent, as they only enter the equations as a flux term in
the photoionization source term. The gases of electrons

and atoms/ions are represented by the density functions:
ρ(e)(r,v, t), ρ(i)(r,v, t), where i denotes the ion charge
i = 0, 1, . . . , NJ , and NJ is an arbitrary number, describ-
ing the maximal ion charge in the system. The general
coupled Boltzmann equations for these gases are:

∂tρ
(e)(r,v, t) + v · ∂rρ

(e)(r,v, t)

+
e

m
(E(r, t) + v × B(r, t)) · ∂vρ(e)(r,v, t) =

Ω(e)(ρ(e), ρ(i), r,v, t), (2)

for electrons, and

∂tρ
(i)(r,v, t) + v · ∂rρ

(i)(r,v, t)

− ie

M
(E(r, t) + v × B(r, t)) · ∂vρ(i)(r,v, t) =

Ω(i)(ρ(e), ρ(i), r,v, t), (3)

for atoms/ions, where the force F is the electromagnetic
force, F(r,v, t) = q(E(r, t) + v × B(r, t)), acting on elec-
trons and ions positioned between r and r+dr, which have
velocities in the range (v,v+dv). The electric field, E, and
magnetic field, B, have two components. The first com-
ponent describes the interaction of charges with external
radiation. The second component describes internal elec-
tromagnetic interaction between electrons and ions. This
component is a non-local function of electron and ion den-
sities.

Collision terms, Ω(e,i), describe the change of the elec-
tron/ion densities of velocities (v,v+dv) measured at the
positions (r, r+dr) with time. This change may be due to:
(i) the creation of secondary electrons and highly charged
ions via photo- and collisional ionizations of atoms and
ions, (ii) elastic and inelastic collisions of electrons and
ions, (iii) the inverse bremsstrahlung process, i.e. absorp-
tions and emissions of photons by electrons during the
elastic electron-ion collisions, (iv) recombination processes
etc. Number of short-range processes involved in the sam-
ple dynamics depends on the wavelength of the laser ra-
diation. If collision terms are neglected, Boltzmann equa-
tions (Eqs. (2), (3)), reduce to the Vlasov equation [17,21]
describing the evolution of a collisionless plasma.

Initial configuration of equations (2), (3) is given by a
smooth atomic density function, ρ(0)(r,v, 0), which repre-
sents the sample at t = 0.

3 Boltzmann equation for an irradiated
atomic cluster

First experimental studies on the interaction of intense
VUV photon beams with matter were performed for clus-
ters of xenon atoms irradiated with VUV photons [11,27].
New experiments with clusters exposed to FEL radiation
at higher photon energies are planned in the next fu-
ture. The existing and the future experimental data give
a unique opportunity for testing theoretical models.
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Below we formulate the assumptions of the primary
transport model dedicated for studying the dissipative dy-
namics and the radiation damage in xenon clusters at the
VUV photon energies. We will fix the physical parameters
as they were set in the first experiment with the VUV
photons [11].

The production terms, Ω(e,i), in our model will then
include only basic predominant interactions, i.e.:

(i) single photoionizations of atoms: a single VUV
photon of energy, Eγ = 12.7 eV, may excite electrons
only from the 5p3/2 shell of xenon atoms of the bind-
ing energy, Ei = 12.1 eV. Here the photon energy was
set as in the VUV FEL experiment [11]. We neglect
possible multistep photoionizations and multiphoton
ionizations within this primary model. We also ne-
glect the effect of plasma screening on the atomic
energy levels and photoionization cross sections;

(ii) elastic and inelastic collisions of electrons and
atoms/ions: we assume that an inelastic collision
always releases a secondary electron. We neglect in-
elastic collisions of electrons and atoms/ions which
lead only to an excitation of an atom/ion. These pro-
cesses contribute to the multistep collisional ioniza-
tion which is not included within this primary model.
We also neglect the effect of plasma screening on the
collisional cross sections;

(iii) inverse bremsstrahlung photoabsorption in
the presence of atoms or ions: in our model,
as the primary kinetic energy of a photoelectron re-
leased by a VUV photon is small, E ∼ 0.6 eV, com-
paring to the first ionization energy, Ei = 12.1 eV,
a process of energy pumping is necessary in order to
initiate any collisional ionizations by electrons. In-
verse bremsstrahlung process is among the possible
processes [9]. At the low photoelectron energies, that
we consider here, the proper description of inverse
bremsstrahlung should be quantum and not classi-
cal [28,29]. Quantum cross sections for absorption
or emission of radiation photons by electrons dur-
ing their collisions with ions were taken from refer-
ence [30]. In this approximation ions were treated as
point-like charges [30];

(iv) electromagnetic interaction of electrons with
laser field: here this interaction is treated within
the dipole approximation. This approach is justified
by the small spatial size of the irradiated spherical
cluster of a radius ∼25 Å, when compared to the
wavelength of laser radiation (∼100 nm). We expect
that the attenuation of the laser beam is small. Rough
calculation of the attenuation via photoabsorption
at the beginning of the pulse gives the transmission
of about 94%. After all atoms have been photoion-
ized, photons from the pulse can be still absorbed
via inverse bremsstrahlung. Estimated total energy
absorbed by this xenon cluster is about 300 thousand
of eVs at most;

(v) electromagnetic interactions of electrons and
ions within the sample: they are expressed in
the form of the non-local potentials. We assume for

simplicity that both electrons and ions are point-
like charged particles, and neglect the effects of the
atom/ion internal structure and of its finite size on
the interaction potential within this primary model.

Finally, we note that within this primary model we also
neglect the recoil energies and the recoil momenta of the
atoms/ions gained during their interactions with photons
or electrons. Electrons are assumed to scatter isotropically
on atoms/ions. This is the first order approximation which
can be made: (i) in case of photoionizations due to the low
energy of the incoming photons, and (ii) in case of colli-
sional interactions due to the large difference of electron
and ion masses and to the low impact energies of electrons.
Within this approximation the movement of ions will be
stimulated by the Coulomb repulsion only, and will start
at the final stages of the explosion. Additional pressure on
ions due to the recoil momenta is neglected.

Recoil effects, and also short-range electron-electron
interaction can be conveniently treated by the means
of the Fokker-Planck equation. As other relevant pro-
cesses which were neglected within this primary model,
e.g. three-body recombination, charge enhanced ioniza-
tion [12] or effects of electron screening [9], these processes
will be treated in forthcoming papers.

3.1 General Boltzmann equations for electrons
and ions in an irradiated cluster

Before writing the equations, we will introduce the fol-
lowing notation. The integrated densities, ρ(e,i)(r, t) are
defined as,

ρ(e,i)(r, t) =
∫

d3v ρ(e,i)(r,v, t). (4)

Velocity vE =
√

2(Eγ − Ei)/m is the magnitude of the
velocity of the photoelectrons. Coefficients, σi→i+1

γ , de-
note the total photoionization cross sections for a single
ionization of an ion of charge, i = 0, 1, . . . , NJ . Ioniza-
tions up to NJ = 7 are allowed within our model. Coef-
ficients, σi→i+1

ic , denote the total collisional cross sections
for a single ionization of ions of charge, i = 0, 1, . . . , NJ

by an electron. Coefficients, σi→i
ec , denote the elastic colli-

sional cross sections. Elastic collisional cross sections and
ionization collisional cross sections were measured exper-
imentally for xenon [31–35]. Within this primary model
the cross section for the elastic electron-ion scattering was
approximated by the cross section for the elastic electron-
atom scattering. The scattering of electrons on ions was
assumed to be isotropic.

A compact notation for doubly differential cross sec-
tions is used, dσi→j(ve;v′

e(vs))/dv. Velocity ve denotes
the velocity of the incoming electron, v′

e is the velocity
of this electron after a collision, vs is the velocity of the
secondary electron.

Coefficient j(Eγ) describes the photon flux, and Ω is
a spherical angle.

Starting from equations (2), (3), we derive the
following equations for electron and ion densities within an
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∂ρ(e)(r,v, t)

∂t
+ v

∂ρ(e)(r, v, t)

∂r
− ∂ρ(e)(r,v, t)

∂v
·
(

e2

4πε0m

∫
d3r′

r− r′

|r − r′|3
{

NJ∑

i=0

i · ρ(i)(r′, t) − ρ(e)(r′, t)

}

+
e

m
E(t) ε

)

=

NJ∑

i=0

ρ(i)(r, t) j(Eγ)
dσi→i+1

γ (Eγ ;v)

dΩv

δ(v − vE)

v2

+

NJ∑

i=0

ρ(i)(r, t)

{∫
d3veveρ

(e)(r,ve, t)
dσi→i

ec (ve ;v)

dΩev

δ(v − ve)

v2
− vρ(e)(r,v, t)σi→i

ec (v)

}

+

NJ∑

i=0

ρ(i)(r, t)

{∫
d3ve ve ρ(e)(r,ve, t)

(
dσi→i+1

ic (ve ;v
′
e = v)

dv
+

dσi→i+1
ic (ve ;vs = v)

dv

)

− vρ(e)(r,v, t)σi→i+1
ic (v)

}

+

NJ∑

i=1

ρ(i)(r, t)

{ ∞∑

n=−∞

∫
d3ve d3v′

e ρ(e)(r,ve, t)
[
δ(v′

e − v) − δ(v − ve)
]

× δ

(
v′2

e

2
− v2

e

2
− n�ω

m

)

J2
n

(

−eE0

�ω2
ε(v′

e − ve)

)
dσi→i

ec (v′
e − ve)

dΩel

}

(5)

∂ρ(i)(r,v, t)

∂t
+ v

∂ρ(i)(r, v, t)

∂r
+

∂ρ(i)(r,v, t)

∂v
·
(

e2

4πε0M

∫
d3r′

r − r′

|r − r′|3
{

NJ∑

j=0

(ij) · ρ(j)(r′, t) − iρ(e)(r′, t)

}

+
ie

M
E(t) ε

)

=

j(Eγ)σi−1→i
γ (Eγ)ρ(i−1)(r, v, t) − j(Eγ)σi→i+1

γ (Eγ)ρ(i)(r,v, t) +

{∫
d3ve σi−1→i

ic (ve) ve ρ(e)(r,ve, t)

}

ρ(i−1)(r,v, t)

−
{∫

d3ve σi→i+1
ic (ve) ve ρ(e)(r,ve, t)

}

ρ(i)(r, v, t) (6)

irradiated sample:

see equation (5) above

for electrons and:

see equation (6) above

for ions, where we treated the interaction of charges with
the external electric field within the dipole approxima-
tion,

E(r, t) ∼= E(t)ε, (7)

and neglected the subleading contribution coming from
the interaction of charges with magnetic field. Vector, ε,
is the polarization vector of the electric field.

Writing these equations we took into account only bi-
nary collisions between participating particles. The as-
sumption of binary collisions is not valid for very dense
systems and for systems with the presence of long-range
forces, where many body effects become important [14].
Within this primary model we neglected short-range three
and higher order many body interactions ocurring due to
the high density of particles in the sample. Many body
effects due to the presence of Coulomb forces were treated
correctly within the approximation that recoil energies
and recoil momenta of atoms and ions could be neglected.

Equations (5), (6) then describe the evolution of a clus-
ter irradiated with VUV FEL photons within our primary
model. The structure of these equations is general, and
other interactions or improvements can conveniently be
implemented into these equations. These completed equa-
tions would then describe a more advanced model of the

sample dynamics. Equations (5), (6) can be also adapted
for describing the dynamics of an irradiated sample at
other photon energies.

3.2 Solving the Boltzmann equations

Equations (5), (6) are complicated integro-differential
equations in six-dimensional phase space. They can be
treated only numerically. For a spherically symmetric clus-
ter the number of dimensions can be reduced by one, from
six to five. A significant simplification of the Boltzmann
equations (5), (6) can be achieved by expanding the elec-
tron and ion densities in terms of their angular moments.
This method was successfully applied for the description
of the evolution of the protoneutron stars [25] and plas-
mas [17,21]. An assumption has then to be made that the
isotropic components of the electron and ion densities are
predominant. Here we mean isotropy in phase space, and
not only in space, i.e. at each spatial point of an isotropic
spatial distribution the velocity distribution has also to
be isotropic. Such approximate isotropy occurs in systems
where there is a strong collisional dissipation of particle
energies, and the phase space component of the collec-
tive transport is small. This is certainly the case for low
energy electrons inside an ionic/atomic cluster or gas, as
they then frequently collide (with short range forces) with
ions and atoms inside this sample.

The validity of the angular moments method may be
also verified a posteriori, i.e. after solving the Boltzmann
equations one may compare the magnitude of the isotropic
component of the charge densities to the angular ones. If
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∂ρ
(e)
0 (r, v, t)

∂t
+

v

3r2

∂(r2ρ
(e)
1 (r, v, t))

∂r
− A(r, ρ

(i)
0 , ρ

(e)
0 )

3v2

∂(v2ρ
(e)
1 (r, v, t))

∂v
=

NJ∑

i=0

ρ
(i)
0 (r, 0, t)

{

j(Eγ)σi
γ(Eγ)

δ(v − vE)

v2
+

∫ ∞

0

dve v3
e ρ

(e)
0 (r, ve, t) dσi

tot(ve; v) − vρ
(e)
0 (r, v, t)σi

tot(v)

}

∂ρ
(e)
1 (r, v, t)

∂t
+ v

∂ρ
(e)
0 (r, v, t)

∂r
− A(r, ρ

(i)
0 , ρ

(e)
0 )

∂ρ
(e)
0 (r, v, t)

∂v
= −

NJ∑

i=0

ρ
(i)
0 (r, 0, t) vρ

(e)
1 (r, v, t)σi

tot(v), (11)

the isotropic components of the electron and ion densities
obtained with these equations were much larger that the
other components of the electron densities, the angular
moments approximation worked correctly, and the solu-
tion of the equation obtained within this approximation
is a good estimate of the full solution.

4 Test of Boltzmann method: simplified
electron dynamics inside an atomic cluster

In order to test the applicability and efficiency of the
Boltzmann method for describing the dynamics of elec-
trons within FEL irradiated samples, we have applied it
to two study cases of a simplified electron dynamics: (i)
the case of pure Coulomb dynamics, where the interaction
of sample with the laser field was restricted to photoion-
ization effect, (ii) the case where the complete interaction
of the sample with laser field was included, i.e. the drift
component of the electron density describing the interac-
tion of free electrons with the electric field of the laser
was treated, and the inverse bremsstrahlung process was
included.

Our initial configuration was given by a smooth atomic
density function, representing a spherically symmetric
cluster consisting of 909 neutral xenon atoms. Edges of
this sample were smoothed to facilitate computation. The
density in the center was comparable to that of the
xenon cluster, ∼0.005 1/Å3. The radius of this cluster
was ∼25 Å. This sample was irradiated with the VUV
FEL photons of energies, Eγ = 12.7 eV. For simplicity
we have assumed that the photon pulse had a constant
intensity, and that it was switched on instantaneously at
t = 0 fs. The pulse intensity corresponded to an upper
estimate of the maximal FEL pulse intensity observed in
the experiment [11], I = 1014 W/cm2.

4.1 Pure Coulomb dynamics inside the irradiated
cluster

In this case we have applied the following simplifying as-
sumptions to the electron and ion/atom dynamics. First,
we have expanded the electron density using the angular
moment expansion:

ρ(e)(r,v, t) ∼= 1
4π

(
ρ
(e)
0 (r, v, t) + cos(θvr)ρ

(e)
1 (r, v, t)

)
,

(8)
and within this diffusion approximation [25] kept only: (i)
its zeroth order (isotropic) component, ρ

(e)
0 (r, v, t), which

corresponds to the number of electrons inside a volume
element dV = d3r d3v, and (ii) its first order (transport)
component, ρ

(e)
1 (r, v, t), which contributes to the parti-

cle flux through the borders of the phase space element1.
Radius, r, is the distance from the centre of the sample
(r = |r|), and v denotes the magnitude of the electron ve-
locity (v = |v|). The function cos(θvr) denotes the cosine
of the relative angle between vectors v and r. The isotropic
component of the electron density, ρ

(e)
0 (r, v, t), has to be

a positive number, as it describes the number of electrons
in an infinitesimal volume element, dV = d3r d3v. The
transport component of the density, ρ

(e)
1 (r, v, t), can be a

positive or a negative number. Positive values of ρ
(e)
1 in-

dicate that there is a collective transport in phase space
outwards the sample, the negative ones indicate that there
is a collective transport inwards the sample.

The approximation (8) is valid only if the densities,
ρ
(e)
0 (r, v, t) and ρ

(e)
1 (r, v, t) fulfill the condition:

ρ
(e)
0 (r, v, t) � |ρ(e)

1 (r, v, t)|. (9)

Within the approximation (8) we neglected the drift com-
ponent of the electron density which is coupled to the laser
field. This component will be treated in the next study
case.

Second, as we are only interested in following the elec-
tron dynamics within this simplified model, we further
assume that the positions of ions are fixed and their ve-
locities remain equal to zero during the evolution:

ρ(i)(r,v, t) ∼= 1
4π

ρ
(i)
0 (r, v, t)

δ(v)
v2

. (10)

In the true physical case this assumption is valid only
during the first stages of the exposure, as ions are much
heavier than electrons (for Xe: MXe ∼ 105 me). The
approximation of a frozen xenon gas (10) implies that
ρ(i)(r, t) = ρ

(i)
0 (r, v = 0, t).

Within the diffusion approximation (8) Boltzmann
equations for the electron density, Equation (5), reduce to:

see equation (11) above

1 Within the diffusion approximation the total electron
flux in real space through the sphere of radius, r, is:

S(r) = (4π/3)
∫ ∞
0

dv v3 r2 ρ
(e)
1 (r, v, t), and the total flux

in velocity space through the sphere of radius, v, is:

S(v) = −(4π/3)
∫ ∞
0

dr A(r, ρ
(i)
0 , ρ

(e)
0 ) v2 r2 ρ

(e)
1 (r, v, t), where

A(r, ρ
(i)
0 , ρ

(e)
0 ) is the radial acceleration (12).
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where:

A(r, ρ(i)
0 , ρ

(e)
0 ) =

e2

4πε0m

4π

r2

∫ r

0

dr′ r′2

×
{

NJ∑

i=0

iρ
(i)
0 (r′, 0, t)−

∫ ∞

0

dv v2ρ
(e)
0 (r′, v, t)

}

,

(12)

dσi
tot(ve; v) = σi→i

ec (ve)
δ(v − ve)

v2
+

2
v2

dσi→i+1
ic (ve; v)

dv
,

(13)

σi
tot(v) = σi→i

ec (v) + σi→i+1
ic (v), (14)

σi
γ(Eγ) ≡ σi→i+1

γ (Eγ). (15)

The Coulomb electrostatic force in equation (11) has been
expanded using the multipole expansion with the accuracy
consistent with the accuracy of the diffusion approxima-
tion (8). Electron-ion and electron-atom collisions were
assumed to be isotropic which is a reasonable approxima-
tion at low impact energies of electrons. For the simulation
purpose the delta-like photoionization velocity distribu-
tion, δ(v − vE)/v2 in equation (11), had to be approxi-
mated with a Gaussian profile of a non-zero width and
a mean value at the photoelectron velocity, vE . The nor-
malization constant of this Gaussian profile was chosen in
order to obtain the correct number of the photoelectrons
released.

Inverse bremsstrahlung process or any other heating
mechanism were not included within this study case.

As there is no transport of ions within the approxima-
tion, equation (10), Boltzmann equation for ions (6) re-
duces to an ordinary rate equation, describing the change
of the number of ions due to the photo- and collisional
ionizations:

∂ρ
(i)
0 (r, 0, t)

∂t
= ρ

(i)
0 (r, 0, t)

{

j(Eγ)σi−1
γ (Eγ)

+
∫ ∞

0

dve v3
e ρ

(e)
0 (r, ve, t)σi−1

ic (ve)
}

− ρ
(i)
0 (r, 0, t)

{

j(Eγ)σi
γ(Eγ)

+
∫ ∞

0

dve v3
e ρ

(e)
0 (r, ve, t)σi

ic(ve)
}

, (16)

where i = 1, 2, . . . , NJ . For atomic densities this equation
simplifies to:

∂ρ
(0)
0 (r, 0, t)

∂t
= − ρ

(0)
0 (r, 0, t)

{

j(Eγ)σ0
γ(Eγ)

+
∫ ∞

0

dve v3
e ρ

(e)
0 (r, ve, t)σ0

ic(ve)
}

. (17)

We have prepared a code dedicated for solving Boltzmann
equations for a spherically symmetric atomic cluster lo-
cated inside a simulation box of a finite size. This code
has been based on relevant numerical methods [36–38].
Integrals and partial derivatives in Boltzmann equations
were evaluated using the pseudospectral method [37]. Our

algorithm has been carefully tested, e.g. the interactions
terms were included step-by-step into the code, the en-
ergy and the particle number were monitored during the
evolution. We have proved that our algorithm was conser-
vative so that particle number and energy were conserved
with a good accuracy with the Boltzmann equations if the
source terms were equal to zero. The accuracy of the time
integration has been checked with two independent time-
integration methods. Obtaining the predictions for a single
case took several hours on the AlphaStation XP1000.

As in this study case the system of electrons and
frozen ions reached equilibrium within 10 fs of the ex-
posure, we followed the evolution of the sample up to
50 fs of the exposure. The simulation box had the size:
(0 < r < 120 Å) × (0 < v < 30 Å/fs), and it was di-
vided into 40 × 70 grid points respectively. The simula-
tion box corresponded to a sphere in real space of radius,
r = 120 Å, and a sphere of radius, v = 30 Å/fs, in veloc-
ity space. This box was surrounded by an absorbing wall.
Figures 1–9 show the results.

The quantities obtained after solving Boltzmann equa-
tions were: the three-dimensional electron density func-
tions, ρ

(e)
0 (r, v, t), ρ

(e)
1 (r, v, t), and the integrated two-

dimensional ion/atom distributions, ρ(i)(r, t), recorded at
different times, t = 0, . . . , 50 fs. Figures 1 and 2 show
an example of the isotropic and the transport compo-
nent of the electron density in phase space obtained with
Boltzmann equations at time, t = 2 fs. Plotted are the
functions: ρ̃

(e)
j (r, v, t) = r2 v2 ρ

(e)
j (r, v, t), where j = 0, 1.

The isotropic component of the electron density function,
ρ̃
(e)
0 (r, v, t), is a positively defined function (Fig. 1). This

function is localized in phase space (see the contour plot).
In contrast, the transport component of the electron den-
sity, ρ̃

(e)
1 (r, v, t), may take both positive and negative val-

ues. In the contour plot of Figure 2, the upper part of the
contour at v = 4–8 Å/fs with a peak at negative values of
ρ̃
(e)
1 (r, v, t) indicates the inward transport. The lower part

of the contour plot at v = 1–3 Å/fs with a peak at positive
values of ρ̃

(e)
1 (r, v, t) indicates the outward transport.

These three-dimensional plots are not easy to analyze.
More transparent information on the evolution of the elec-
tron cloud can be obtained from plots of the integrated
isotropic and transport density functions, n, defined as,

nj(v, t) ≡
∫

ρ
(e)
j (r, v, t) r2 dr,

nj(r, t) ≡
∫

ρ
(e)
j (r, v, t) v2 dv. (18)

The integrated isotropic component, n0(v, t) and n0(r, t)
are related to the full integrated densities as, ρ(e)(r, t) =
n0(r, t), and, ρ(e)(v, t) = n0(v, t), within the diffusion ap-
proximation (8). For ions we have: n

(i)
0 (r, t) ≡ ρ

(i)
0 (r, 0, t).

The total number of electrons (ions), N (e,i)(t), can then be
obtained after performing the integration of the isotropic
component of the density function over d3r d3v:

4π

∫
ρ
(e,i)
0 (r, v, t) r2 v2 dr dv = N (e,i)(t). (19)
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Fig. 1. (Color online) Isotropic component of the electron
density in phase-space, ρ̃0(r, v, t) = r2 v2 ρ0(r, v, t), recorded
at time, t = 2 fs: (a) three-dimensional view and (b) contour
plot. This density was obtained in case of the irradiation with
the VUV FEL photons of energies, Eγ = 12.7 eV. Coulomb
interactions between charged particles were included. Initial
density of free electrons at t = 0 fs was equal to 0. The ranges
of axes correspond to the size of the simulation box.

Figure 3 shows the atomic, single ion and double ion den-
sity functions. Almost all photoelectrons have been re-
leased within the first femtosecond of the exposure. This
result is consistent with the photoionization rate esti-
mated at this photon energy, the assumed pulse inten-
sity and the pulse shape. Atomic density significantly de-
creased within the first femtosecond of the exposure. In
contrast, the single ion density at t = 1 fs followed the
shape of the initial atomic distribution at t = 0 fs. There
were no double or highly charged ions observed in the sam-
ple, as the electrons released were not energetic enough
for further collisional ionizations. Also, photons were as-
sumed to induce single photoionizations of the neutral
atoms only.

The dynamics of electrons was strongly non-
equilibrium during the first stages of the exposure. In-
terparticle Coulomb forces were preventing most of the
electrons from leaving the ionic sample. Some of the elec-
trons were, however, able to escape. The largest flows of
energy and particles have been observed within 5–15 fs of
the exposure (Fig. 6d). Within this time weak collective

0

20
40

60
80

100

r

0
5

10
15

20
v

-0.05
0
0.05
0.1

Ρ1
�
�r,v,t�

-
0
0

(a)

0 20 40 60 80 100
0

5

10

15

20

r

v

(b)

Fig. 2. (Color online) Transport component of the electron
density in phase-space, ρ̃1(r, v, t) = r2 v2 ρ1(r, v, t), recorded
at time, t = 2 fs: (a) three-dimensional view and (b) contour
plot. This density was obtained in case of the irradiation with
the VUV FEL photons of energies, Eγ = 12.7 eV. Coulomb
interactions between charged particles were included. Initial
density of free electrons at t = 0 fs was equal to 0. The ranges
of axes correspond to the size of the simulation box.

oscillations of the electron cloud around the ion cloud were
observed (not shown). After this time electrons thermal-
ized, and their anisotropic transport component became
negligible. Figure 4 shows the rapid progress of the ther-
malization process for both the isotropic and the transport
components of the integrated electron density, n0(v, t) and
n1(v, t). The initial free electron density was equal to zero.
After the first femtosecond of the exposure the shape of
the isotropic electron density, n0(v, t), followed the Gaus-
sian profile of the photoelectron velocity distribution, and
it broadened with time. Full thermalization was achieved
at times ≥ 10 fs within this test model. We have fitted
Maxwell-Boltzmann distribution to the results on the in-
tegrated density function, n0(v, t), obtained at t = 20 fs
(Fig. 4): n0(v, t) = a exp(−mv2/(2kBT )). The electron
temperature was estimated to, kBT = 0.68–0.77 eV, which
corresponded to the average energy, 〈E〉 = 3kBT/2 =
1.02–1.15 eV. This value agreed well with the average en-
ergy estimated with the global parameters at t = 20 fs
(Figs. 6a and 6c), 〈E〉 ≡ Ekinet/Nel = 1.07 eV.
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Fig. 3. (Color online) Integrated atom and ion densities,
ni=0,1,2

0 (r, t): (a) atomic density, (b) single ion density, (c) dou-
ble ion density, recorded at times, t = 0, . . . , 50 fs. These den-
sities were obtained in case of the irradiation with the VUV
FEL photons of energies, Eγ = 12.7 eV. Coulomb interactions
between charged particles were included.

Here we again recall that the energy transferred to the
system by a single photon of energy, Eγ = 12.7 eV, was
Eph−el = 1.1 eV instead of 0.6 eV, as we had to approx-
imate the delta-like photoionization velocity distribution,
δ(v − vE)/v2 in equation (11) with a Gaussian profile of
a non-zero width.

Figure 4b shows the time evolution of the transport
component of the electron density, n1(v, t), correspond-
ing to the weak plasma oscillations. There is a strong in-
crease of the outward electron transport (in velocity space)
within 2 fs of the exposure. Energetic electrons can then
leave the simulation box (Fig. 6d). However, at some time
point, t ∼ 5 fs, slower electrons travelling outward are
stopped and attracted back by ions. The inward transport
start then to dominate. After the thermalization of the
electrons is achieved, the collective transport (in velocity
space) reduces significantly, and the transport component
of the electron cloud becomes small.

Spatial evolution of the electron cloud (Fig. 5), de-
scribed by the integrated densities, n0(r, t) and n1(r, t), is
less dynamic than the evolution of the velocity densities,
n0(v, t) and n1(v, t). A rapid increase of n0(r, t) is observed
only within the first femtosecond of the exposure. After
this time, the shape of the isotropic component of the in-
tegrated electron density does not change much with time.
Weak oscillations of electron cloud are visible, if r2 n0(r, t)
is plotted (not shown). The magnitude of the spatial trans-
port component of the density function, n1(r, t), is much
smaller than its isotropic component, n0(r, t), during the
evolution. During the first femtoseconds of the exposure
there is a weak spatial transport outward, and the position
of the maximum of the transport component propagates
towards lower values of r at increasing times. This cor-
responds to a wave propagating inside the sample. These
weak oscillations occur until about 10–20 fs of the expo-
sure, when they are damped due to the fast progressing
thermalization of electrons.

In Figure 6 we plot also global parameters of the sam-
ple as functions of time: (a) the total, kinetic and (b)
potential energy of the system, (c) the particle number,
and (d) the flows of energy and of the particle numbers
recorded at a fixed distance of 10 grid points from the
external borders of the simulation box. These flows give
a valuable qualitative information about the escape rate
of the electrons at different stages of the evolution, which
is helpful for estimating the correct size of the simulation
box. If the box size would be too small, some electrons
of a total negative energy could leave the box during the
evolution. This would lead to a strong increase of the po-
tential energy within the system and induce an unrealistic
electron dynamics.

Total kinetic energy of the sample and the number of
electrons and ions increased rapidly within 2 fs of the ex-
posure. Within and after this time we observed a strong
outward flow of electrons. The fastest electrons were able
to leave the simulation box. Potential energy slowly in-
creased with time, as more electrons escaped from the
simulation box. It was, however, small if compared to the
total energy.
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Fig. 4. (Color online) Integrated electron density: (a) isotropic component, n0(v, t), (b) transport component, n1(v, t), recorded
at different times, t = 0, . . . , 50 fs. These densities were obtained in case of the irradiation with the VUV FEL photons of energies,
Eγ = 12.7 eV. Coulomb interactions between charged particles were included.

4.2 Extended electron dynamics including drift
component of electron density and inverse
bremsstrahlung

Our aim is now to show that this statistical model is also
able to predict higher ionization states, as observed in
experiments [11,27]. Highly charged ions will be created
during inelastic collisions of ions with energetic electrons.
Other processes can also contribute to the formation of
highly charged states [15]. Here we concentrate on the
collisional ionization that may be a leading process.

Collisional ionization was not possible in the preced-
ing study case (Sect. 4.1), as we did not include any heat-
ing mechanism there, and electrons remained cold during
the exposure. Here, we enable electron heating, including
the inverse bremsstrahlung process. As we will later see,
this process will lead to an efficient heating of electrons,
and subsequent collisional ionizations inside the cluster.
As we are only interested in following the electron dy-
namics within this simplified model, we will still keep the
assumption of frozen atoms and ions, equation (10).

Again, we stress here that within this study case we
do not aim to reproduce the experimental results of refer-

ences [11,27]. This attempt is planned for the forthcoming
papers, as it requires detailed adjustments of the present
model in order to apply it to a realistic case. Only qualita-
tive comparison of our predictions to the data is possible
within this study case.

In order to improve the description of the electro-
magnetic laser-matter interaction within our cluster, we
add a drift component, ρ

(e)
2 (r, v, t), to the diffusion expan-

sion (8):

ρ(e)(r,v, t) ∼= 1
4π

(
ρ
(e)
0 (r, v, t) + cos(θvr)ρ

(e)
1 (r, v, t)

+ cos(θvε)ρ
(e)
2 (r, v, t)

)
, (20)

where the function cos(θvε) denotes the cosine of the rel-
ative angle between vectors: electron velocity, v, and po-
larization vector of the laser field, ε. This component de-
scribes electric interaction of the electrons with the field
of the laser, and completes the first-order angular mo-
ment expansion of ρ(e)(r,v, t) up to the terms involving
only polar angles. Terms involving azimuthal angles are
neglected.
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Fig. 5. (Color online) Integrated electron density: (a) isotropic component, n0(r, t), (b) transport component, n1(r, t), recorded
at different times, t = 0, . . . , 50 fs. These densities were obtained in case of the irradiation with the VUV FEL photons of
energies, Eγ = 12.7 eV. Coulomb interactions between charged particles were included.

After substituting the ansatz (20) to equation (5), we
obtain a system of three coupled equations for ρ

(e)
0 (r, v, t),

ρ
(e)
1 (r, v, t), and ρ

(e)
2 (r, v, t) (not shown), where we have

also included the inverse bremsstrahlung term defined
in equation (5). We have checked that the term de-
scribing the coupling of the inverse bremsstrahlung to
the isotropic component of electron density is domi-
nant. We have also proven that at the assumed param-
eters of the laser field, the argument of Bessel func-
tion, J2

n

(−(e E0/�ω2) ε(v′
e − ve)

)
is small. Therefore sin-

gle photon emissions or absorptions will dominate the in-
verse bremsstrahlung process.

We have solved the extended equations numerically
with our Boltzmann solver. The simulation box had the
size: (0 < r < 100 Å) × (0 < v < 100 Å/fs), and it
was divided into 40×90 grid points respectively. The ra-
dius of the spherically symmetric xenon cluster located
inside this simulation box was ∼25 Å. This cluster was
irradiated with an intense pulse of constant intensity,
I = 1014 W/cm2. We followed the evolution of this sys-
tem up to 180 fs of the exposure. At that time the major-
ity of electrons has already left the sample and collisional

ionization rate saturated. The repulsive Coulomb forces
within the sample were so large that Coulomb explosion
of ions should have already started. This was, however, not
possible within the approximation of frozen ions, and we
stopped the simulation at entering this unphysical regime.

As in the previous study case, we followed the evolu-
tion of irradiated cluster, recording electron and ion den-
sities at different times of the exposure (not shown). With
these observables we estimated global parameters of the
system as functions of time (Fig. 7): (a) total, kinetic and
potential energy, (b) electron temperature, (c) total num-
ber of electrons, atoms and ions, (d) energy and particle
flows. In Figure 8 we also plotted the total numbers of
electrons and ions of different charges recorded as a func-
tion of time.

Including the drift component (20) into the Boltzmann
equations lead to fast collective oscillations of the elec-
tron cloud. Such oscillations are expected to appear at
intense laser fields, when the strong electric field of the
laser is sufficient to drive electron cloud forth and back
in the direction of the field polarization. Figure 9 shows



476 The European Physical Journal D

900

920

940

960

980

1000

1020

0 5 10 15 20 25 30 35 40 45 50

t [fs]

E [eV]

total energy
kinetic energy

(a)

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

t [fs]

E [eV]

potential energy

(b)

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35 40 45 50

t [fs]

Nel,ion

all ions
electrons

(c)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

t [fs]

Flow

particle flow [1/fs]
energy flow [eV/fs]

(d)

Fig. 6. (Color online) Global parameters of the irradiated sample as functions of time: (a) total energy, (b) potential energy,
(c) number of electrons and singly charged ions in the sample, (d) flows of energy and particles measured at the distance of
10 grid points from the external borders of the simulation box. These parameters were obtained in case of the irradiation with
the VUV FEL photons of energies, Eγ = 12.7 eV. Coulomb interactions between charged particles were included.

the oscillations of kinetic energy and total energy of the
electrons due to this effect.

In our extended model electrons gained energy via the
inverse bremsstrahlung process. This effect is reflected in
the shapes of the kinetic energy curve and of the temper-
ature curve (Figs. 7a and 7b). The total kinetic energy of
electrons and their temperature increased with time until
∼160 fs of the exposure (Fig. 7a). After this time most
of the electrons were energetic enough to leave the simu-
lation box (Fig. 7c and 7d), and the total kinetic energy
of electrons within the box decreased. However, the tem-
perature of electrons within the simulation box still grew
for some time as the remaining electrons still gained en-
ergy from the laser field with the inverse bremsstrahlung
process.

Two phases of fast electron escape occurred at about
10–30 fs and after 160 fs of the exposure. These phases
were reflected in energy flows recorded during the ex-
posure (Fig. 7d). The first escape phase occurred before
highly charged ions (+2 and higher) were created within
the sample (Fig. 8a). Some of electrons gained the amount

of energy sufficient to leave the sample and the simula-
tion box. This escape phase ended, when the attracting
Coulomb force within the sample increased. It then kept
most of the electrons inside the sample until the second
escape phase started at about 160 fs. Within this phase a
majority of electrons left the simulation box. If the ions
were not frozen, this should have lead to a fast Coulomb
explosion of remaining ions.

Between these two escape phases highly charged ions
have been created in the subsequent ionization processes:
Xe+q → Xe+q+1, where q = 0, . . . , 6. Doubly charged ions
were observed after 5–6 fs of the exposure. Triply charged
ions were observed after 30–40 of the exposure. Ions of
charges +4 up to +7 were created later in the exposure,
starting at 70 (Xe +4) and 120 fs (Xe +7) of the exposure.

At the end of the exposure (t = 180 fs) there were
no neutral atoms left within the cluster. Contributions of
ions of specific charges to the total number of ions were
following: Xe +1 (∼10%), Xe +2 (∼7%), Xe +3 (∼11%),
Xe +4 (∼7%), Xe +5 (∼10%), Xe +6 (∼16%) and Xe +7
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Fig. 7. (Color online) Global parameters of the irradiated sample as function of time: (a) total, kinetic and potential energy,
(b) electron temperature, (c) number of electrons and gross-number of ions, Nion =

∑
i iNi, where Ni is the number of ions of

charge i, (d) flows of energy and particles measured at the distance of 16 grid points from the external borders of the simulation
box. These parameters were obtained in case of the irradiation with the VUV FEL photons of energies, Eγ = 12.7 eV, in the
extended model, where both the inverse bremsstrahlung process and drift component of the electron density were included.
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Fig. 8. (Color online) Number of electrons and ions created within the sample during the exposure to VUV FEL photons of
energies, Eγ = 12.7 eV: (a) electrons and ions up to +3, (b) electrons and ions from +4 up to +7. Those results were obtained
with the extended model, where both the inverse bremsstrahlung process and drift component of the electron density were
included.
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Fig. 9. (Color online) Total, kinetic and potential energy of
electrons within the simulation box within first femtoseconds
of the exposure. Characteristic oscillations of electron cloud are
reflected by kinetic energy curve. Those results were obtained
with the extended model, where both inverse bremsstrahlung
process and drift component of the electron density were in-
cluded.

(∼39%). The contribution of Xe +7 ions was the largest
one.

Summary and conclusions

We have formulated general Boltzmann equations describ-
ing the evolution of a non-uniform sample irradiated with
VUV FEL photons. We have solved these equations nu-
merically with a dedicated algorithm. Two study cases of a
simplified electron dynamics inside a spherically symmet-
ric xenon cluster were considered. In case when the laser-
matter interaction was restricted to the photoionization
effect, results obtained with Boltzmann equations gave
a comprehensive description of the evolution of electron
cloud during its non-equilibrium (before thermalization)
and equilibrium stages (after thermalization). At photon
energies, Eγ = 12.7 eV, thermalization of electrons was
observed after 10 fs of the exposure within this system.
This thermalization was an effect of long-range Coulomb
forces, and not of the interparticle collisions, as the en-
ergy transfers in the non-ionizing electron collisions were
not allowed within this model.

During the exposure almost all photoelectrons were
confined inside the ion cluster by the Coulomb internal
field. Only a few photoelectrons were energetic enough to
escape. Therefore the electrostatic energy of the sample
was too low to accelerate remaining electrons and initiate
further collisional ionizations. These results confirm that
efficient mechanisms of energy pumping are necessary for
the creation of highly charged ions in the sample irradiated
with VUV photons.

In the second study case we extended the description
of the laser-matter interaction including the drift compo-
nent of electron density. This drift component induced fast
collective oscillations of the electron cloud in the intense
electric field of the laser.

In this case the inverse bremsstrahlung process was
also introduced as a mechanism of energy pumping. We
then observed higher ionization states created within the
irradiated cluster after about 6 fs (Xe +2), 30 fs (Xe +3),
70 fs (Xe +4), 90 fs (Xe +5), 100 fs (Xe +6) and 120 fs
(Xe +7) of the exposure. These states were created during
inelastic collisions of energetic electrons with ions. Simu-
lation ended up with the majority of Xe +7 ions (∼40%)
within the sample.

Two phases of fast electron escape were observed dur-
ing the exposure. After the second escape phase majority
of the electron has left the sample, and at this time the
Coulomb explosion of unscreened ions should have started.
This was not possible, as the ions were kept frozen within
this model.

The results obtained with the extended model are
promising. We observe a qualitative agreement between
the charge densities and the average energy absorbed per
atom estimated with this primary model and the experi-
mental data. In the first experiments [11] at a power den-
sity in the range 1013–1014 W/cm2 charge states up to
8+ where observed. The kinetic energy of the ions varies
between 100 eV and 2500 eV, depending on the charge
state. These numbers are in the same range as the val-
ues predicted in the present work. However, at this stage
we can make only qualitative comparison of our predic-
tions to the data. The model developed here needs fur-
ther improvements of its physical assumptions in order to
be applied to a realistic case. Effects of plasma screen-
ing on atomic energy levels and on photo- and collisional
ionization cross sections have to be treated [9,12]. So far
potentials used in equations were unscreened, and cross
sections (also inverse bremsstrahlung cross sections) were
also obtained with those unscreened potentials. Including
the screening effects within this non-uniform sample will
significantly affect the ionization dynamics. Within the
improved model also the realistic pulse shape, correct clus-
ter size and density should be implemented. Ions should
not be kept frozen during the evolution. Important mech-
anisms of thermalization: recoil effects and short-range
electron-electron interactions, need to be treated in this
improved model. Possible influence of recombination and
of other many body processes on the sample dynamics
requires dedicated analysis.

However, we do not expect that including further in-
teractions into these equations will lead to more numerical
complicacies. As the main nonlinearity and stability prob-
lems have been successfully treated in the primary algo-
rithm, and this algorithm correctly followed the dynamics
of the sample in our study cases, we expect that it can
easily be extended for a more advanced model.

At this point we have also to discuss the applicability of
the classical approximation for describing the evolution of
FEL irradiated samples (see also [39]). We stress here that
our final aim is to obtain a description of radiation damage
at short wavelengths of photon radiation (soft and hard
X-rays), when plasma electrons plasma are hot, and their
treatment with classical Boltzmann equations therefore
justified. When we try to apply the classical description
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to a sample irradiated with VUV FEL photons of λ ∼
100 nm (Eγ = 12.7 eV), and estimate the degeneracy
parameter Υ = EFermi/kBT for electrons, it is ∼1 for
electron plasma of temperature, T ∼ 1 eV and density
ne ∼ 1022 cm−3, and it is ∼ 20 for the plasma of the same
temperature and density ne ∼ 1024 cm−3 These values are
much above the classical regime, Υ � 1.

However, the evolution of an irradiated sample is a
non-equilibrium process, and if the energy gain by elec-
trons and electron escape rate from the sample were fast
enough, the system could enter the classical regime very
early in the exposure. Classical description could then still
be applicable. This scenario is probable, according to the
results obtained with our second study case. Therefore,
in the realistic case it will be necessary to monitor the
degeneracy parameters during the evolution of the sam-
ple. Their value will justify the validity of the classical
approximation.

We believe that despite those limitations the method
proposed here offers a unique possibility of studying the
complex dynamics of large spatially non-uniform sam-
ples, irradiated with the FEL pulses. Whereas in real
experiments the sample is exposed to several processes
contributing simultaneously to the radiation damage, the
Boltzmann simulation tool enables one to include specific
interactions only. In this way the influence of different ion-
ization mechanisms on the overall dynamics of the sample
can conveniently be tested. Also, accurate time character-
istics of damage processes can easily be obtained.

To sum up, Boltzmann approach is a first princi-
ple model which can follow non-equilibrium classical pro-
cesses in phase space. Single particle densities evolved with
Boltzmann equations include the full information on par-
ticle positions and velocites, and not only on their collec-
tive components. Average observables obtained with the
Boltzmann solver are not biased with statistical errors.
However, the information on the three and higher order
correlations is not included within Boltzmann equations.
Including the effects of many body correlations into these
classical equations is generally not possible, only in a few
cases and under simplifying assumptions, e.g. by applying
the Fokker-Planck equation in case of long-range Coulomb
forces. The other serious disadvantage of the Boltzmann
approach is its numerical complexity which requires an
application of advanced numerical methods.

Computational costs within Boltzmann approach do
not scale with the number of atoms within a sample, as in
the MC method. Therefore, a Boltzmann solver is usually
much more efficient for larger samples of a regular struc-
ture than a Monte Carlo code. This does not apply for
samples of a complex or irregular structure. As these sam-
ples cannot be accurately represented by a smooth density
function, Boltzmann equations can only give a crude esti-
mate of their damage dynamics. Improving the accuracy
within the Boltzmann approach is possible only by ex-
tending the number of grid points used to represent the
sample. This may lead to very long computational times
when a large number of grid points was applied.

To sum up, we have demonstrated that the Boltzmann
equations are a useful method to follow the radiation dam-
age of non-uniform samples irradiated with the FEL pho-
tons. We believe that these equations may soon become a
standard tool for investigating the complex dynamics of
irradiated samples.
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